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Abstract. In this paper we consider directed walks on a tree with a fixed branching ratioK

at a finite temperatureT . We consider the case where each site (or link) is assigned a random
energy uncorrelated in time, but correlated in the transverse direction, i.e. within the shell. In
this paper we take the transverse distance to be the hierarchical ultrametric distance, but other
possibilities are discussed. We compute the free energy for the case of quenched disorder and
show that there is a fundamental difference between the case of short-range spatial correlations
of the disorder which behave similarly to the non-correlated case considered previously by
Derrida and Spohn and the case of long-range correlations which have a totally different overlap
distribution (approaching a single delta function aboutq = 1 for largeL, whereL is the length
of the walk). In the latter case the free energy is not extensive inL for the intermediate and also
relevant range ofL values, although in the true thermodynamic limit extensivity is restored. We
identify a crossover temperature which grows withL, and wheneverT < Tc(L) the system is
always in the low-temperature phase. Thus, in the case of long-ranged correlation as opposed
to the short-ranged case a phase transition is absent.

1. Introduction

The problem of directed polymers in a random medium can be formulated on a lattice [1–5],
or in the continuum limit [6–12]. On a lattice there is a random energy associated with
each bond (or site). Walks (or polymers) start at a given point and are allowed to proceed
only along the positive direction of one of the coordinates which is referred to as ‘time’.
The other coordinates are referred to as ‘transverse’. The partition function is given by

ZL(β) =
∑
w

e−βE(w) (1)

where the sum is over all walksw of L steps and

E(w) =
∑
(ij)∈w

εij (2)

is the sum of the random energies along the walk.β = 1/T is the the inverse temperature
in the proper units.

In the continuum limit the partition function is given by the functional integral

Z(β) =
∫

[Dx(t)] exp

{
− β

∫ L

0
dt [ 1

2ẋ(t)
2+ V (x(t), t)]

}
(3)

wherex(t) is the (d − 1)-dimensional transverse position of the polymer at timet and
V (x(t), t) is the random potential. The term12ẋ(t)

2 measures the bending energy of the
polymer.

0305-4470/98/469157+13$19.50c© 1998 IOP Publishing Ltd 9157



9158 Y Y Goldschmidt

On the special lattice of a Cayley tree and with uncorrelated disorder

〈εij εlm〉 = gδilδjm (4)

many properties of the model could be extracted analytically [13, 14], such as the free
energy and the probability of overlaps between two walks. The model exhibits a phase
transition at finite temperatureTc. Defineq(w,w′) to be the fraction of their length that
two walksw,w′ of lengthL spend together. The probability distribution for overlaps is
then given by

P(q) =
〈

1

Z2
L

∑
w

∑
w′
δ(q − q(w,w′)) exp(−βEw − βEw′)

〉
. (5)

For T > Tc it was found that the probability of overlaps is a single delta function atq = 0,
whereas forT < Tc the probability distribution consists of a weighted sum of two delta
functions

P(q) = T

Tc
δ(q)+

(
1− T

Tc

)
δ(q − 1). (6)

This distribution implies that the free energy landscape consists of many valleys separated
by large barriers. Two walks lying in the same valley have an overlap ofq = 1, whereas
walks lying in different valleys have zero overlap.

In the continuum limit the model has been treated for generald by the variational
approximation [8] and by the 1/d-expansion [11], both valid for larged. For the special
case ofd = 2 a Bethe ansatz technique yielded some exact results [6]. In the continuum limit
the case of both short- and long-ranged correlations of the disorder have been considered.
The correlations have been defined by

〈V (x, t)V (x′, t ′)〉 = δ(t − t ′)F ((x− x′)2) (7)

and classified as short or long ranged according to the form ofF(y2). For the short-ranged
case one usually takes [8, 15, 16]

F(y2) = g

γ − 1
(a0+ y2)(1−γ ) (8)

where g > 0 is the strength of the disorder andγ > 2 determines the range of the
correlations.

The case of 1< γ < 2 is considered long ranged. Also considered long ranged are
correlations of the form

F(y2) = a0− g

1− γ y
2(1−γ ) (9)

with 06 γ < 1. The constanta0 is important to maintain the requirement|F(y2)| 6 F(0)
dictated by the Schwarz inequality for the appropriatey-range, but is sometimes neglected
in the literature [8], more than likely because it contributes only a trivial constant to the
free energy. In the case of a correlation of the form (9),a0 has to be very big, such
that [a0(1− γ )/g]1/(2(1−γ )) is greater than the system size. An example of this kind of
correlations is the so-called random field case (see e.g. [15]), for whichγ = 1

2 and

F(y2) = h2(N − |y|) (10)

whereN is the system size. In the short-ranged case a phase transition in terms of the
temperature (or the strength of the disorder) has been found, where the two phases differ
in the nature of the distribution of overlaps. A one-step replica-symmetry-breaking (RSB)
solution has been found forT < Tc when using the variational approximation. Both phases
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in this approximation were found to be characterized by the trivial wandering exponent
ν = 1

2 defined by

〈x2(L)〉 ∝ L2ν (11)

(here the bar represents configurational or thermal average and the brackets refer to averaging
over the disorder). This is unlike the exact analytical result atd = 2 which yieldsν = 2

3

(superdiffusion) [1, 6], and simulations that foundν > 1
2 for d > 2 [17, 18]. There were

claims in the literature that the wandering exponent is greater than1
2 for any finite d in

the disordered dominated phase [18]. On the other hand there are claims that have gained
more weight recently [19, 11, 20–22], i.e. that the exponent becomes trivial (1

2) at an upper
critical dimension, which is presumablydc = 5 (four transverse directions).

For the case of long-ranged correlations the variational approximation for the continuum
limit model predicts [8]

νFlory = 3

2(1+ γ ) (12)

and it is not known if this result is exact at any finite dimension. In this case no phase
transition is found as a function of the temperature (or the strength of the disorder) and
there is an infinite-step RSB solution (à la Parisi) for the appropriate order parameter,
which manifests itself as a continuous (non-delta function) part in the overlap distributions
for the walks.

The special case of long-ranged harmonic correlations (γ = 0) has been solved exactly
by Parisi [23]. An inspection of his solution reveals that in that case the free energy is not
extensive but grows asL2 (whereL is the size of the system in the temporal direction).
Another exponent which is often referred to in the literature is the exponent characterizing
the free energy fluctuations

〈F 2〉 − 〈F 〉2 ∝ L2ω. (13)

Theω exponent is related toν through the scaling relation

2ν = 1+ ω. (14)

Thus for the harmonic caseν = 3
2 andω = 2. The harmonic case is special in the sense

that its solution is replica symmetric.
The case of long-ranged correlations, or in fact any non-zero correlations of the disorder,

has not been investigated in the previous treatments of the model on the Cayley tree. The
interesting results obtained for the long-ranged case in the continuum limit, and the fact
that an exact solution has been found in the case of harmonic correlations, motivated us to
carry out an investigation of the case of non-zero ranged spatial correlations on a Cayley
tree, both for the case of short- and long-ranged correlations. We obtain some interesting
results which will be presented below together with some open questions. A thorough
understanding of the directed polymer problem is particularly important because of its
connection with the Karder–Parisi–Zhang equation [24] and with the behaviour of flux lines
in high-Tc superconductors [25–28]. There is also a well known mapping from the directed
polymer problem to Burgers’ turbulence, where the case of long-ranged correlations is of
importance [29].

2. The tree problem

We consider directed walks on a branch of a Cayley tree of coordination numberK + 1
(see figure 1). Each bond branches intoK new bonds in the forward ‘time’ direction. For
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Figure 1. A branch of a tree with branching ratioK = 2. The ultrametric distance between
points A and B is 1, between A and C (or D) is 2 and between A and E (or A and F, G, H) is 3.

each site (or alternatively each bond ending at the given site) we choose a random energy
ε(t, z) where t designates the shell, 06 t 6 L, andz is a label within the shell that can
takeKt values. The random energies are chosen from a Gaussian distribution satisfying

〈ε(t, z)〉 = 0 (15)

〈ε(t, z)ε(t ′, z′)〉 = δt,t ′f (d(z, z′)). (16)

Heref (d) is a function to be specified later, andd(z, z′) is a distance among points (sites)
belonging to the same shell. Energies at different shells are uncorrelated.

In this paper we choose the following definition ford(z, z′):

du(z, z
′) = number of steps for two walks starting atz andz′

and movingbackwardsin time to meet.
(17)

This is a hierarchical distance between two points. It also satisfiesdu(z, z) = 0 and
0 6 du(z, z

′) 6 t within the t-shell. This distance is also referred to as an ultrametric
distance [30] (hence the subscriptu), since it satisfies a stronger inequality than the ordinary
triangular inequality, namely

du(z, z
′) 6 max(du(z, y), du(y, z

′)) (18)

for any pointy within the shell. This ultrametric distance is very different from an Euclidean
distance on lattices characterized by translational invariance in real space, but is sufficient
for defining spatial correlations of the disorder within a shell, making the problem amenable
to an exact solution.

An alternative choice for a distance which is more suitable for calculating the root-
mean-square transverse distance can be defined as follows [19]. Let us label each branch of
the tree by 1, . . . , K, which we call directions. These labels area priori arbitrary on a tree,
but once the choice is made it remains fixed at each branching point. For a given walk of
length t starting at the origin we denote byz1 the number of times the walk moves in the
1-direction, byz2, the number of times it moves in the 2-direction, etc. We then associate a
vector(z1−t/K, . . . , zK−t/K) with the endpoint of the walk on thet-shell. We denote this
K-dimensional vector byR(z). Note that there is not a one-to-one correspondence between
points z on the tree and vectorsR as there are different points which are associated with
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the same vector. The transverse distance between two points is defined as

dtr (z, z
′) =

( K∑
i=1

(Ri(z)− R′i (z′))2
)1/2

. (19)

This distance always satisfies the inequality

dtr (z, z
′) 6
√

2du(z, z
′) (20)

for any two pointsz, z′. The advantage of this distance is that in the absence of disorder
one has

R = 0 (21)

R2 = 1

K

(
1− 1

K

)
L (22)

where the bar denotes configurational average over all walks of lengthL. Thusν = 1
2 as

is expected for a random walk. In the presence of disorder with spatial correlations, this
distance is harder to use in a calculation of the quenched free energy of the model, and
further discussion of the use of this distance will be given in a future publication.

3. The replica solution

The method we use in this section is a generalization of the method used in appendix 1 of
[19] for uncorrelated disorder. To calculate the free energy of the model we use the replica
trick

−βF = lim
n→0

1

n
ln〈ZnL〉. (23)

We can think ofZnL as the partition function ofn different walks of lengthL emanating
from the origin of a branch of a tree. Adopting Parisi’s scheme for RSB in real space, we
assume that the following arrangement of then walks gives the leading contribution to the
free energy in then→ 0 limit whenL is large.

(a) The n-walks stay together for the firstL(q1 − q0) steps (whereq0 = 0 and
06 q1 6 1).

(b) The walks split intom1 bundles of(n/m1) walks each and remain so for a time
L(q2− q1).

(c) Continuing in this way, in thej th step the walks split intomj groups each comprising
of (n/mj ) walks and remain so for a timeL(qj+1− qj ) ≡ L1qj .

(d) Finally, at timetM = LqM = L, the walks split inton individual walks.
Thus

0= q0 6 q1 6 · · · 6 qM = 1 (24)

1= m0 6 m1 6 · · · 6 mM = n. (25)

We also define

x(qj ) = n/mj (26)

and thus

1= x(qM) 6 · · · 6 x(qj ) · · · 6 x(q0) = n. (27)

For largeL, 〈ZnL〉 is given by

〈ZnL〉 = max
{qj }

max
{mj }

M−1∏
j=0

(Kmj 〈exp{−β(n/mj )(ε(t)1 + · · · ε(t)mj )}〉)L1qj . (28)
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Hereε(t)i denotes the energy encountered by a walker belonging to theith group at timet .
The factorization in equation (28) follows from the fact that random energies at different

times are uncorrelated. The factorKmj is a geometrical degeneracy factor which is entropic
in origin. It arises because each of themj groups can choose its next step amongK
different possibilities, and each possibility gives rise, as will become clear in the following,
to a configuration characterized by the same contribution to the partition function (same
Boltzmann weight). One can also associate a combinatorial factor with different possibilities
to assign individual walks to bundles when they split, but this turns out to give a total factor
of n!, which becomes 1 in then→ 0 limit.

To proceed we use the fact that the random energies are chosen from a Gaussian
distribution satisfying equation (16). It then follows that

〈exp{−β(n/mj )(ε(t)1 + · · · ε(t)mj )}〉 = exp{ 12β2(n/mj )
2〈(ε(t)1 + · · · ε(t)mj )2〉} (29)

〈(ε(t)1 + · · · ε(t)mj )2〉 = mjf (0)+ 2
∑
`

Nj,`f (`) (30)

whereNj,` is the number of pairs of distancèat time t ∈ [tj , tj+1] among themj groups
of walkers, wheretj = Lqj . The coefficientsNj,` satisfy

mj + 2
∑
`

Nj,` = m2
j . (31)

A careful enumeration of the distribution of distances aftert steps (tj < t < tj+1) reveal
that the following identity holds:

Nj,L(qj−qk)+1t =
1

2

(
1

mk−1
− 1

mk

)
m2
j k = 1, . . . , j (32)

with 1t = t − tj . Since we are interested in the limitM → ∞, i.e. 1q → 0, we will
takeNj,` to depend only onj and omit1t in equation (32). In deriving equation (32)
we used the fact that the groups of walkers split at each timetj = Lqj according to
the procedure described at the beginning of the section, as well as the definition of the
hierarchical (ultrametric) distance. Substituting the result (32) in equation (30) we find

(n/mj )
2〈(ε(t)1 + · · · ε(t)mj )2〉 = nx(qj )f (0)+ n

j∑
k=1

(x(qk−1)− x(qk))f (L(qj − qk)). (33)

In the limit n→ 0 the inequalities (25) and (27) are inverted and hence

0= x(q0) 6 · · · 6 x(qj ) · · · 6 x(qM) = 1. (34)

Using expression (33) in equation (29) and subsequently in the formula for〈ZnL〉,
equation (28), we obtain

1

nL
ln〈ZnL〉 =

M−1∑
j=0

1qj

x(qj )
lnK + 1

2β
2
M−1∑
j=0

1qjx(qj )f (0)

−1

2
β2

M−1∑
j=0

1qj

j∑
k=1

1qk

(
x(qk)− x(qk−1)

1qk

)
f (L(qj − qk)) (35)

where an extremum overx(qj ) has to be taken. In the limit of largeM, q becomes a
continuous variable in the interval [0,1], andx(q) becomes a function on that interval
satisfying 06 x(q) 6 1. The summations in equation (35) become integrals and we have

−βF
L
=
∫ 1

0

dq

x(q)
lnK + 1

2
β2
∫ 1

0
dq x(q)f (0)− 1

2
β2
∫ 1

0
dq

∫ q

0
dp x ′(p)f (L(q − p))

(36)
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wherex ′(p) stands for dx/dp. This expression can be further simplified: first we perform
the p integration by parts using the fact that x(0) = 0. Next, in the second term which
remains a double integral we change the order of integration∫ 1

0
dq

∫ q

0
dp =

∫ 1

0
dp

∫ 1

p

dq (37)

leading finally to a single integral. These steps yield

−βF
L
=
∫ 1

0

dq

x(q)
lnK + 1

2
β2
∫ 1

0
dqx(q)[f (0)− f (L(1− q))] (38)

wherex(q) is to be determined by extremizing this expression. Equation (38) is the main
result of this section.

Before we end this section let us mention a simple generalization of the problem.
Equation (16) can be replaced by a more general form

〈ε(t, z)ε(t ′, z′)〉 = δt,t ′f (t, d(z, z′)) (39)

so the spatial correlation can vary with time (but energies at different times are still
uncorrelated). The possibility of a time-dependent width of the distribution of disorder
in the uncorrelated case has been considered in [13]. Using equation (39), we can repeat
all the steps leading to equation (36), and we find that it is replaced by

−βF
L
=
∫ 1

0

dq

x(q)
lnK + 1

2
β2
∫ 1

0
dq x(q)f (Lq,0)

− 1
2β

2
∫ 1

0
dq
∫ q

0
dp x ′(p)f (Lq,L(q − p)). (40)

It is easy to pursue this more general case by the same method presented in the next section,
but we will not consider it further in this paper.

4. Solution for the free energy and overlap distribution

In order to extremize the expression for the free energy (38) derived in the last section, we
take a functional derivative with respect tox(q) to obtain

− lnK

x2(q)
+ 1

2β
2(f (0)− f (L(1− q)) = 0 (41)

and hence

x(q) = T
√

2 lnK√
f (0)− f (L(1− q)) . (42)

This solution is valid for the range ofq for which the inequality 06 x(q) 6 1 holds.
Otherwise one has to choosex(q) at its maximal (or minimal) allowed values.

Before we consider some concrete candidates for the spatial correlation function, we
make a comment regarding posssible admissible correlations. The Schwarz inequality
requires that the functionf (y) defined in equation (16) satisfy|f (y)| 6 f (0). More
generally for thekth level the covariance matrix

Cz,z′ = 〈ε(k, z)ε(k, z′)〉 = f (d(z, z′)) (43)

must be positive semidefinite, which means that all its eigenvalues are non-negative. In the
kth shell the hierarchical distance takes values from 1 tok. Writing down the covariance
matrix for thekth shell we verified that a sufficient condition for an admissible correlation
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of the disorder is a functionf (y) which is always non-negative and is a monotonically
decreasing function of the hierarchical distacey. For simplicity we will limit the discussion
for the caseK = 2, but it can be generalized to any value ofK. First we present as an
example the eigenvalues of the covariance matrix in the three-dimensional shell of the Bethe
lattice (BL)

f (0)− f (1) (multiplicity 4)

f (0)+ f (1)− 2f (2) (multiplicity 2)

f (0)+ f (1)+ 2f (2)− 4f (3)

f (0)+ f (1)+ 2f (2)+ 4f (3)

and these are all non-negative iff (0) > f (1) > f (2) > f (3) > 0. In general we now
obtain by induction all the eigenvalues of the covariance matrix of the (k + 1)th shell once
we know the eigenvalues of the matrix of thekth shell. Fork = 1 the covariant matrix is
given by (

f (0) f (1)
f (1) f (0)

)
(44)

which has eigenvectors (1,−1) and (1, 1) and corresponding eigenvaluesf (0)− f (1) and
f (0)+ f (1). For k = 2 the covariant matrix is a 4× 4 matrix

C(2) =
(
C(1) D(1)
D(1) C(1)

)
(45)

whereC(1) is the k = 1 covariance matrix andD(1) is a 2× 2 matrix, all the elements
of which are equal tof (2). The eigenvectors ofC(2) are (1,−1, 0, 0) and (0, 0, 1,−1)
with the corresponding eigenvaluef (0)− f (1) of multiplicity 2. In addition there are two
new eigenvectors (1, 1,−1,−1) and (1, 1, 1, 1) with eigenvaluesf (0)+ f (1)− 2f (2) and
f (0) + f (1) + 2f (2). In the kth level there are alwaysk + 1 distinct eigenvalues, the
(k + 1)th of which is always given by

λk+1(k) = f (0)+ f (1)+ 2f (2)+ · · · + 2k−1f (k). (46)

At level (k+1) the firstk eigenvalues remain the same as levelk first k eigenvalues, but with
double multiplicity. This is because the corresponding eigenvectors are just obtained from
the previous eigenvectors by adding zeros at the beginning or at the end. But there are two
new eigenvectors(1, . . . ,1,−1, . . . ,−1) and (1, . . . ,1) with corresponding eigenvalues
which are given by

λk+1(k + 1) = λk+1(k)− 2kf (k + 1)

λk+2(k + 1) = λk+1(k)+ 2kf (k + 1).
(47)

It is thus straightforward to check that the positivity and (decreasing) monotonicity
conditions mentioned above yield only non-negative eigenvalues. We now turn to some
concrete examples.

(i) The case of short-ranged spatial correlations.We first consider the function

f (y) = g

(a0+ y)λ (48)

with λ > 0. In this case equation (42) becomes

x(q) = T
√

2 lnK/g

{a−λ0 − [a0+ L(1− q)]−λ}1/2
(49)
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and in the limit of largeL the solution forx(q), 0< q < 1 becomes

x(q) =

T

Tc
T 6 Tc

1 T > Tc
(50)

together withx(0) = 0 andx(1) = 1. HereTc is given by

Tc =
√
f (0)

2 lnK
. (51)

For T 6 Tc, deviations ofx(q) from the form given in expression (50) are of O(L−λ),
except when 1− q ∼ O(1/L), andx(qc) becomes equal to 1 forqc = 1−O(1/L).

The solution found above is the same as the solution found in [13], for zero-ranged
correlations. Thus we see that the case of short-ranged correlations is characterized by the
same overlap function and free energy as the zero-ranged case. The overlap distribution
function is given in terms of the solution forx(q) by [30]

P(q) = dx(q)

dq
(52)

and hence

P(q) =


T

Tc
δ(q)+

(
1− T

Tc

)
δ(q − 1) T 6 Tc

δ(q) T > Tc
(53)

as discussed in the introduction. The free energy is obtained by substituting the expression
for x(q) in equation (38) and we obtain:

−F/L =
{
Tc lnK + f (0)/(2Tc) =

√
2f (0) lnK T 6 Tc

T lnK + f (0)/(2T ) T > Tc
(54)

where we have dropped corrections on the rhs which vanish asL→∞. Note that on the
BL with the hierarchical distance we did not find any substantial change asλ crosses the
value 1 as has been found in the continuum limit.

(ii) The case of long-ranged correlations.In this case we choose for the function
governing the disorder correlation

f (y) = a0− gyα (55)

with α > 0 andg > 0. We takea0 to be very large, so that it satisfies

T �
√

a0

2 lnK
(56)

for the range of temperatures we are interested in. Furtheremore, ifL is such that it satisfies

L <

(
a0

g

)1/α

(57)

thenf (y) is positive for the entire range of allowed distances and since it is a monotonically
decreasing function ofy it is a bona fide correlation. The region of physical interest
is a0 → ∞ with L large but still satisfying the condition (57). Eventually though, if
one is interested in the true thermodynamic limitL → ∞ one has to consider the case
L > (a0/g)

1/α. In that case we must define

f (y) =
{
a0− gyα 06 y 6 (a0/g)

1/α

0 (a0/g)
1/α 6 y 6 L

(58)
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for f (y) to be a proper correlation function. We will comment about the thermodynamic
limit later.

For now, starting withf (y) given by equation (55) with the condition (57) being
satisfied, the solution forx(q) (see equation (42)) becomes

x(q) =


T
√

2 lnK√
gLα(1− q)α 06 q 6 qc

1 qc 6 q 6 1

(59)

with

qc = 1− 1

L

(
T 22 lnK

g

)1/α

. (60)

We can identify anL-dependent crossover temperature (at whichqc = 0) given by

Tc(L) =
( g

2 lnK

)1/2
Lα/2. (61)

For T fixed, asL becomes large,Tc(L) grows withL and thus we find ourselves constantly
in the low-temperature phase of the model, characterized byqc > 0. (If on the other hand
T > Tc(L) thenx(q) = 1 for anyq > 0.) Assuming thatL is large enough soT � Tc(L)

(but with condition (57) still satisfied), we find by substituting the expression forx(q) in
the formula for the free energy, equation (38)

−βF
L
= Tc(L) lnK

T

∫ 1

0
dq (1− q)α/2+ T

Tc(L)

gLα

2T 2

∫ 1

0
dq (1− q)α/2+O(L−1) (62)

which can be simplified to give

−F =
√

2g lnK

1+ α/2 L
1+α/2 (63)

where we dropped constant terms. We see that the free energy is not extensive for this
range ofL values, but rather proportional toL1+α/2. It is also temperature independent as
it is in the low-temperature phase of the short-ranged case.

Let us now consider the distribution of overlaps. Using equation (52) we find

P(q) =


T

Tc(L)
δ(q)+ α

2

T

Tc(L)

1

(1− q)1+α/2 06 q 6 qc

0 qc 6 q 6 1
(64)

in the limit of largeL this expression becomes simply

P(q) = δ(1− q). (65)

This becomes obvious by going back to the expression forx(q) which in the limit of large
L becomex(q) = 0 for 06 q < 1 andx(1) = 1, which can also be expressed as

q(x) =
{

0 x = 0

1 0< x 6 1.
(66)

Thus in the limit of largeL the solution becomes replica symmetric for any fixed
temperature.

Before we close this section we show that in the true thermodynamic limit the free energy
becomes extensive. To achieve this we must allowL > (a0/g)

1/α and use the correlation
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function defined by eq.(58). We still demand thata0 be very large soT � √a0/(2 lnK) is
always satisfied. In that case we find forx(q):

x(q) =


T/Tc(a0) 06 q 6 qc1
T
√

2 lnK√
gLα(1− q)α qc1 6 q 6 qc2

1 qc2 6 q 6 1

(67)

where

Tc(a0) =
( a0

2 lnK

)1/2
(68)

qc1 = 1− 1

L

(
a0

g

)1/α

(69)

qc2 = 1− 1

L

(
T 22 lnK

g

)1/α

. (70)

In the limit L→∞ one finds

x(q) = T/Tc(a0) 0< q < 1 (71)

together withx(0) = 0 andx(1) = 1. In the limit T � Tc(a0) we see that practically
x(q) = 0 for 06 q < 1 andx(1) = 1 which amounts toP(q) = δ(1− q) as before. The
free energy though is given by

−F/L =
√

2a0 lnK (72)

and it is thus an extensive function ofL as it should be in the thermodynamic limit.

5. Summary and discussion

In this paper we have considered the case of directed polymers on a Cayley tree in the
presence of correlated disorder. We have used the ultrametric hierarchical distance to
introduce distance within each shell, and this distance is simple enough to enable us to
solve the model exactly under the assumption of a hierarchical Parisi-type solution.

We have found two different types of behaviour depending on the range of the disorder
correlations. In the case of short-range correlations the solution behaves like the non-
correlated case: there is a phase transition at a finite temperature and the two phases differ
by the temperature dependence of the free energy and by the expression for the overlap
distribution which is non-trivial in the low-temperature phase. In the case of long-range
correlations there is no phase transition as a function of temperature (strictly speaking the
transition temperatureTc(a0) can be made as large as we please by choosinga0 to be large
enough). This is similar to the behaviour that has been found in the continuum limit [8].
However, we have identified anL-dependent crossover temperature which plays a role for
a finite-size system. We have also found that in the largeL limit the solution becomes
replica-symmetric but with the overlap distribution peaked atq = 1 at any temperature,
which is the case in the short-ranged case only atT = 0. This result is reminiscent of
Parisi’s solution [23] for the case of harmonic correlations in the continuum limit where
no RSB has been found. This is in contrast to results in the continuum limit for the non-
harmonic case [8] where the variational approximation yielded an infinite-step RSB for
the long-ranged case (but also no phase transition). Another feature we have found in the
long-ranged case, which is similar to Parisi’s result [23], is the non-extensivity of the free
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energy in terms ofL over a large range ofL-values. Eventually asL → ∞, the free
energy become extensive. The exponent 1+ α/2 may be related to the exponentω which
characterizes the free energy fluctuations, see equation (13), but this can be established only
after carrying out a calculation of the free energy fluctuations on the Cayley tree.

We should emphasize, that because of the non-Euclidean nature of the hierarchical
distance on a tree, we could not establish a relation between the exponentsλ in equation (48)
or α in equation (55) to the exponentγ defined in equations (8) and (9) which characterizes
the range of disorder correlations on ordinary lattices embedded in Euclidean space. Related
to this is the fact that the separation between short- and long-range correlations occurs for
γ = 2 for ordinary lattices (see equation (8) and [8]) whereas we find the separation to
occur atλ = 0 (or α = 0) for the tree problem.

There are various possibilities to extend this work further. One is to consider the
transverse distance defined in section 2, and attempt to solve the model, including the
behaviour of the root-mean-square transverse distance characterized by an exponentν.

Also, we have only considered the case of a Gaussian distribution of the disorder.
Other distributions are possible, some better suited for calculating 1/d corrections (like the
exponential distribution) [19]. One can attempt to obtain these corrections for the case of
long-ranged correlations of the disorder.
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